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Abstract
A complete description of Q-conditional symmetries for two classes of
reaction–diffusion–convection equations with power diffusivities is derived.
It is shown that all the known results for reaction–diffusion equations with
power diffusivities follow as particular cases from those obtained here but
not vice versa. The symmetries obtained for constructing exact solutions of
the relevant equations are successfully applied. In the particular case, new
exact solutions of nonlinear reaction–diffusion–convection equations arising in
application and their natural generalizations are found.

PACS numbers: 02.20.−a, 02.30.Jr, 05.45.−a

1. Introduction

Nonlinear reaction–diffusion–convection (RDC) equations of the form

Ut = [A(U)Ux]x + B(U)Ux + C(U), (1)

where U = U(t, x) is the unknown function, A(U), B(U), C(U) are the given smooth
functions and the subscripts t and x denote differentiation with respect to these variables, arise
in a wide range of mathematical models describing various processes in physics and biology
[1–3]. Starting from the remarkable Ovsiannikov work [4] a great number of papers devoted
to investigation of these equations by means of group-theoretical methods. At the present
time one can claim that all Lie symmetries of (1) are completely described and the relevant
Lie solutions are constructed for many equations of the form (1), which arise in applications
(see [5]–[10] and the papers cited therein).

In 1969, Bluman and Cole [11] introduced an essential generalization of Lie symmetry
using the simplest representative of (1), the linear heat equation. These generalized symmetries
are often called nonclassical symmetries nevertheless this notion was not used in [11]. It should
be noted that the determining equations for searching nonclassical symmetries of the linear
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heat equation (see system (21) with λ = 0 ) were not solved in [11]. Many authors tried
to build the general solution of those equations [14, 15, 17]. The most general results were
obtained in [18–20]. In the papers [18, 19], it was proved that the general solution is expressed
in terms of three solutions of the linear heat equation, while the authors of [20] have shown how
the general solution is also obtainable via the matrix Cole–Hopf transformation. In [19, 20],
the determining equations for searching nonclassical symmetries of the Burgers equation were
also solved.

The notion of nonclassical symmetry was further developed in [12, 13, 15, 16] and
many others papers (see an extensive overview in [21]). A new generalization of Lie
symmetry, conditional symmetry, was suggested by Fushchych and his collaborators [22] and
[23, section 5.7]. Note that the notion of nonclassical symmetry can be derived as a particular
case from conditional symmetry but not vice versa (see, e.g., an example in [24]). In the middle
of 1990s of the last century the notion of generalized conditional symmetry was introduced
[25, 26], which again can be considered as a special case of conditional symmetry. Taking
this into account, to avoid any misunderstanding we continuously use the terminolog
Q-conditional symmetry [23] instead of nonclassical symmetry. In fact, there are several types
of non-Lie symmetries at the present time and each of them can be called nonclassical one.

While there is no existing general theory for integrating the nonlinear RDC of the form
(1), the construction of particular exact solutions for these equations is a non-trivial and
important problem. Finding exact solutions that have a physical, chemical or biological
interpretation is of fundamental importance. It is well known that the notion of Q-conditional
symmetry plays an important role in investigation of the nonlinear RDC equations since,
having such symmetries in the explicit form, one may construct new exact solutions, which
are not obtainable by the classical Lie machinery. Several papers were devoted to this topic
during the last 15 years [9, 23, 27–32]. The time is therefore ripe for a complete description
of non-Lie symmetries for the general RDC equation (1). Since it seems to be an extremely
difficult task at the present time here we present the solving for some important particular
cases of (1), namely,

Ut = [UmUx]x + λUmUx + C(U), (2)

Ut = [UmUx]x + λUm+1Ux + C(U), (3)

where λ and m are the arbitrary constants while C(U) is an arbitrary functions.
It should be noted that Q-conditional symmetry of (2) with λ = 0,m = 0, i.e. reaction–

diffusion equation, was investigated in [23, 27], the most general results were obtained in
[29, 33]. Operators of Q-conditional symmetry for equation (3) with λ = 0,m �= 0 have
been constructed in [30] while the complete description of those for the RDC (3) with m = 0
is presented in the recently published paper [32]. Finally, we remind the reader that the
determining equations for constructing the Q-conditional symmetry operators of the general
RDC equation (1) were obtained in [9]; however, that paper contains only examples of
particular solutions of those equations.

We stress that only reaction–diffusion equations with the convective terms (λ �= 0) are
considered below. The motivation of this restriction has two aspects. The first one is to
find Q-conditional symmetries for nonlinear equations involving three transport mechanisms
(diffusion, reaction and convection) in contrary to standard reaction–diffusion (RD) equations.
The second one is to deal with the equations which arise in applications. In fact, sometimes
the convection arises as a natural extension of a conservation law and then one obtains the
RDC equations instead of the RD equations. The effect of nonlinear convection in the RD
equations can have ‘a dramatic effect on the solutions’ [2, section 11.4]).
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The paper is organized as follows. In section 2, we present two theorems giving a
complete description of Q-conditional symmetries of the nonlinear RDC equations (2) and
(3). In section 3, the proof of the theorems are presented. In section 4, the Q-conditional
symmetries are successfully applied for constructing a wide range of exact solutions of the
nonlinear RDC equations including the Murray equation with the fast and slow diffusions and
the Fitzhugh–Nagumo equation with the fast diffusion and convection. The main results of
the paper are summarized and discussed in the last section.

2. Main theorems

We want to find all possible Q-conditional symmetries of the form

Q = ∂t + ξ(t, x, U)∂x + η(t, x, U)∂U , (4)

where ξ and η are the unknown functions, for the RDC equations (2) and (3). We do not
consider the problem of constructing Q-conditional symmetries of the form

Q = ∂x + η(t, x, U)∂U ,

because that is equivalent (up to the known non-local transformation) to solving the given
equations (2) and (3) [34].

Now we present main results of the paper in the form of two theorems. Note that
we search for purely conditional symmetry operators, which cannot be reduced to the Lie
symmetry operators described completely in [9, 10].

Theorem 1. Equation (2) is Q-conditional invariant under the operator (4) if and only if it
and the relevant operator (up to equivalent representations generated by multiplying on the
arbitrary smooth function M(t, x, U )) have the following forms:

(i) Ut = [UmUx]x + λUmUx + (λ1U
m+1 + λ2)(U

−m − λ3), m �= −1, λ2 �= 0 (5)

Q = ∂t + (λ1U + λ2U
−m)∂U ; (6)

(ii) Ut = [U−1Ux]x + λU−1Ux + (λ1 ln U + λ2)(U − λ3), λ1 �= 0, (7)

Q = ∂t + (λ1 ln U + λ2)U∂U ; (8)

(iii) Ut = [U− 1
2 Ux]x + λU− 1

2 Ux + λ1U + λ2U
1
2 + λ3, (9)

Q = ∂t + f (t, x)∂x + 2(g(t, x)U + h(t, x)U
1
2 )∂U , (10)

where the function triplet (f, g, h) is the general solution of the system

2ffx + ft + fg = 0,

fxx − λfx − 2gx − f h = 0,(
g − λ1

2

)
(g + 2fx) + gt = 0, (11)

2gh − λ1h + 2fxh − λ2fx + ht − λgx − gxx = 0,

h2 − λ2

2
h − λ3fx +

λ3

2
g − λhx − hxx = 0.

Hereafter λ1, λ2 and λ3 are arbitrary constants.

It should be noted that cases (i) and (ii) with λ = 0 immediately give the RD equations
and the relevant symmetries obtained in [30].
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Nevertheless, system (11) contains five equations on three unknown functions it is
compatible. In fact, the system with f = g = 0, λ1 = 0 is reduced to the ordinary differential
equation

hxx + λhx +
λ2

2
h − h2 = 0 (12)

and hence

Q = ∂t + 2h(x)U
1
2 ∂U (13)

is the Q-conditional symmetry operator for an arbitrary non-zero solution of (12).
Unfortunately, ODE (12) cannot be integrated for the arbitrary coefficients λ and λ2; however,
some particular solutions can be easily established. For example, setting h = λ2

2 , a particular
case of (i) with m = − 1

2 , λ1 = 0 is obtained.
Setting λ = λ2 = 0 in (12), we arrive at the known ODE hxx = h2 with the general

solution h = W(0, c1, x + c2), where c1 and c2 are the arbitrary constants, W is the
Weierstrass function with the periods 0 and c1. Its simplest solution takes the form h = 6x−2

and leads to the known Q-conditional symmetry operator Q = ∂t + 12x−2U
1
2 ∂U of the

nonlinear diffusion equation Ut = [U− 1
2 Ux]x [30]. However, the result derived in [30] can be

generalized as follows. One can easily check that an arbitrary particular solution of (11) with
λ = 0 generates the Q-conditional symmetry operator (10) of the RD equation

Ut = [U− 1
2 Ux]x + λ1U + λ2U

1
2 + λ3. (14)

Obviously, the operator presented in table 3 of [30] is obtainable from (10) and (11) by setting
λ = λ1 = 0 and f = g = 0 but not vice versa.

Theorem 2. Equation (3) is Q-conditional invariant under the operator (4) if and only if it
and the relevant operator (up to equivalent representations generated by multiplying on the
arbitrary smooth function M(t, x, U )) have the following forms:

(i) Ut = [UmUx]x + λUm+1Ux + λ1U + λ2U
−m, m �= −1, (15)

Q = ∂t − λUm+1∂x + (λ1U + λ2U
−m)∂U ; (16)

(ii) Ut = [U− 1
2 Ux]x + λU

1
2 Ux + (λ1U

3
2 + λ2U

1
2 + λ3)

(
λ1

2λ2
+ U

1
2

)
, (17)

Q = ∂t +

(
−λU

1
2 +

3λ1

2λ

)
∂x + (λ1U

3
2 + λ2U

1
2 + λ3)∂U ; (18)

(iii) Ut = Uxx + λUUx, (19)

Q = ∂t +

(
λ

2
U + q

)
∂x +

(
a + bU − λq

2
U 2 − λ2

4
U 3

)
∂U ; (20)

where the triplet of the functions (a, b, q) is the general solution of the system

at = axx − 2aqx, bt = bxx − 2bqx + λax, qt = qxx − 2qqx − 2bx; (21)

(iv) Ut = Uxx + λUUx + λ0 + λ2U
2, λ2 �= 0, (22)

Q = ∂t +

(
−λU +

λ2

λ

)
∂x + (λ0 + λ2U

2)∂U ; (23)

(v) Ut = Uxx + λUUx + λ0 + λ1U + λ3U
3, λ3 �= 0, (24)
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Qi = ∂t + piU∂x +
3pi

2pi − λ
(λ0 + λ1U + λ3U

3)∂U , i = 1, 2; (25)

where pi are the roots of the quadratic equation 2p2 + λp + 9λ3 − λ2 = 0 and λ0 ∈ R.

Remark 1. The case of the Burgers equation (19) was completely investigated in the papers
[19, 20, 35] (see also a locally equivalent equation to the Burgers equation found in [9]) while
cases (iv) and (v) were obtained in [32].

Remark 2. The RDC equations

Ut = Uxx + λUUx + λ0 + λ1U + λ2U
2

and

Ut = Uxx + λUUx + λ0 + λ1U + λ2U
2 + λ3U

3

possess Q-conditional symmetry; however, they are reduced to (22) and (24), respectively, by
the simple local substitutions [32].

Inserting λ = 0 into (24) and (25) one immediately arrives at the well-known RD equation
and Q-conditional symmetry operator with cubic nonlinearities constructed earlier [27]–[29].

Consider some equations which arise as the particular cases of those from theorems 1 and
2 and are known in application. Equation (5) with m = 1 contains as a subcase the equation

Ut = [UUx]x + λUUx + λ1U(1 − U), (26)

which is a natural generalization of the equation

Ut = Uxx + λUUx + λ1U(1 − U), (27)

extensively studied by Murray [2, section 11.4]. So, equation (26) may be called the Murray
equation with the slow diffusion. On the other hand, (26) is nothing else but the porous-Fisher
equation with the Burgers convective term λUUx . Note that the Murray equation (27) arises
in theorem 2 (see case (iv) and remark 2). Its Q-conditional symmetry was established earlier
in [9] and several exact solutions were recently found in [32]. The Murray equation with the
fast diffusion can also be obtained from (5). Indeed, setting m = −2, λ3 = 0 and λ2 = −λ1,
we arrive at the equation

Ut = [U−2Ux]x + λU−2Ux + λ1U(1 − U). (28)

It should be noted that equation (28) with λ1 = 0 is linearizable by the known integral
substitution [36] while that with λ1 �= 0 is not linearizable.

It is interesting to note that equation (9) with λ2 = −λ1 and λ3 = 0 takes the form

Ut = [U− 1
2 Ux]x + λU− 1

2 Ux + λ1U
1
2 (1 − U

1
2 ). (29)

This equation is an analog of the Murray equation with the fast diffusion. Another analog of
the Murray equation with the fast diffusion is

Ut = [U− 1
2 Ux]x + λU

1
2 Ux + λ1U

1
2 (1 − U

1
2 ), (30)

which is a particular case of equation (15).
Consider the generalized Fitzhugh–Nagumo (FN) equation

Ut = Uxx + λUUx + λ3U(U − δ)(1 − U), 0 < δ < 1. (31)

We remind the reader that (31) with λ = 0 is the famous FN equation [37] describing nerve
impulse propagation. It can also be considered as a simplification of the Hodgkin–Huxley
model (see, e.g., [3]) describing the ionic current flows for axonal membranes. Equation (31)
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with λ = 0 and δ = 1 is the Kolmogorov–Petrovskii–Piskunov equation, which first was
investigated in [38] (see English translation in [39]) to describe the population dynamics under
some restrictions on characteristic individuals. Equation (31) can be reduced to the form

Wt = Wyy + λWWy + λ0 + λ1W − λ3W
3, (32)

where

λ1 = λ3

(
1

3
(δ + 1)2 − δ

)
, λ0 = λ3

1

3
(δ + 1)

(
2

9
(δ + 1)2 − δ

)
, (33)

by the local substitution

W(t, y) = U − 1

3
(δ + 1), y = x +

λ

3
(δ + 1)t. (34)

Now one note that equation (32) is nothing else but equation (24) with the new notation. On
the other hand, (17) contains as a particular case the equation

Ut = (U− 1
2 Ux)x + λU

1
2 Ux + λ2U

1
2 (U

1
2 − δ)(1 − U), δ = λ2

2λ2
, (35)

which may be treated as a generalized FN equation with the fast diffusion. Moreover it will be
shown in section 4 that equation (35) possesses exact solutions, which have similar structure
to those for the generalized FN equation (31). In the case λ2 = 2λ2, this equation may be
called the generalized Kolmogorov–Petrovskii–Piskunov equation with the fast diffusion.

3. Proofs of the theorems

Proof of theorem 1. The proof of theorems 1 and 2 is based on the known algorithm for
finding the Q-conditional symmetry operators (see, e.g., [9, 23]). First, we apply the local
substitution

V =
{
Um+1,m �= −1,

ln U,m = −1.
(36)

In the cases m �= −1 and m = −1, substitution (36) reduces equation (2) to the forms

Vxx = V nVt − λVx + F(V ), (37)

(here n = − m
m+1 �= 0, F (V ) = −(m + 1)C(V

1
m+1 ), λ �= 0) and

Vxx = exp(V )Vt − λVx + F(V ), F (V ) = C(exp V ), (38)

respectively. �

The determining equations for the general RDC equation

Vxx = F0(V )Vt + F1(V )Vx + F2(V ),

with Fi(V ), i = 1, 2, 3, being the arbitrary functions, have been obtained in [9] (see P.535).
In the case F0(V ) = V n, F1(V ) = −λ and F2(V ) = F(V ), those equations take the form

ξV V = 0,

ηV V = 2ξV (−λ − ξV n) + 2ξxV ,
(39)

(2ξV η − 2ξξx − ξt )V
n − ξηnV n−1 − λξx + 3ξV F − 2ηxV + ξxx = 0,

ηFV + (2ξx − ηV )F + nη2V n−1 + 2ξxηV n + ηtV
n − ληx − ηxx = 0.

Solving the first equation of (39), we arrive at the function ξ = a(t, x)V + f (t, x) with
a(t, x) and f (t, x) being the arbitrary smooth functions at the moment.
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It turns out that system (39) does not possess any Q-conditional symmetry if a(t, x) �= 0.
So we must assume

ξ = f (t, x). (40)

Solving the second equation of (39) under condition (40), we arrive at

η = g(t, x)V + h(t, x). (41)

Taking into account (40) and (41), the third equation of (39) reduces to the form

(2ffx + ft + nfg)V n + nf hV n−1 − fxx + λfx + 2gx = 0. (42)

This equation can be split with respect to the powers of V . One needs to consider two cases
depending on n:

(a) if n �= 1 then

2ffx + ft + nfg = 0, f h = 0, fxx − λfx − 2gx = 0. (43)

(b) if n = 1 then

2ffx + ft + fg = 0, fxx − λfx − 2gx − f h = 0.

Let us consider case (a). Substituting (40) and (41) into the fourth equation of (39), one
arrives at

(gV + h)FV + (2fx − g)F = −nV n−1(gV + h)2 + hxx + λhx

+ (gxx + λgx)V − (gt + 2fxg)V n+1 − (ht + 2fxh)V n. (44)

To solve (44) and (43) one needs to consider two subcases, which follow from the second
equation of (43), i.e. either f = 0 or h = 0.

The case f = 0 leads to the system

f = 0,

gx = 0,

(gV + h)FV − gF = −nV n−1(gV + h)2 + hxx + λhx − gtV
n+1 − htV

n.

(45)

Setting g = const, h = const, we arrive at the system

f = 0, g = λ∗
1, h = λ∗

2, F = (λ∗
1V + λ∗

2)(λ3 − V n),

therefore

Vxx = V nVt − λVx + (λ∗
1V + λ∗

2)(λ3 − V n), (46)

Q = ∂t + (λ∗
1V + λ∗

2)∂V . (47)

Applying substitution (36) to equation (46) and operator (47) we obtain case (i) of the theorem
(note one should use new notations λi = λ∗

i

m+1 , i = 1, 2).
Now we assume that g �= const, so that the third equation of (45) can be reduced to the

form(
V +

h

g

)
FV − F = −ngV n−1

(
V +

h

g

)2

+
hxx + λhx

g
− gt

g
V n+1 − ht

g
V n. (48)

It turns out that the last equation can be satisfied only under condition h
g

= const (see

the proof below). Setting h
g

= const into (48) and making the relevant calculations, we only
obtain the Lie symmetry operators and a particular case of operator (47) and equation (46).
For example, if h

g
= 0 then the system

h = 0, 2ffx + ft + nfg = 0, fxx − λfx − 2gx = 0,

gV FV + (2fx − g)F = −nV n+1g2 + (gxx + λgx)V − (gt + 2fxg)V n+1
(49)
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is obtained, which can be easily solved and its general solution has the form

f = c1 exp(λ1nt)

c2 exp(λ1nt) + 1
, g = − λ1

c2 exp(λ1nt) + 1
,

h = 0, F = λ1V
n+1 + λ2V,

where ck ∈ R, k = 1, 2. Hence, we arrive at the RDC equation

Vxx = V nVt − λVx + λ1V
n+1 + λ2V

and the operator

Q = ∂t +
c1 exp(λ1nt)

c2 exp(λ1nt) + 1
∂x − λ1V

c2 exp(λ1nt) + 1
∂V . (50)

However, one can establish by multiplying (50) on the function M(t, x, U) = c2 exp(λ1nt)+1
that the last operator is nothing else but the Lie symmetry operator (see case 8 of table 1 in
[9]).

Let us prove that h
g

= const. By differentiating equation (48) with respect to the variables

x and t one obtains two equations. Assuming
(

h
g

)
t

(
h
g

)
x

= 0, one easily arrives at the condition
h
g

= const.

Consider the case
(

h
g

)
t

(
h
g

)
x

�= 0. By differentiating equation (48) with respect to the
variables x we arrive at the equation

FV = − 1

hx

(2ngh + ht )xV
n − 2nhV n−1 +

hxxx + λhxx

hx

.

Since the functions V n, V n−1 and 1 on the right-hand side are functionally independent (we
consider the case n �= 1) their coefficients must by constants. It means that 2nh = const so
that hx = 0. Taking now two last equations of (43), one easily establish that gx = 0, i.e. we
arrive at the contradiction:

(
h
g

)
x

= 0.
Consider case (b). Substituting (40) and (41) into the fourth equation of (39), we arrive

at (44) with n = 1. Dealing with this equation in the same way as above (see case (a)) we
obtain the equation

Vxx = V Vt − λVx + λ∗
1V

2 + λ∗
2V + λ∗

3 (51)

and the operator

Q = ∂t + f (t, x)∂x + (g(t, x)V + h(t, x))∂V , (52)

where the triplet (f, g, h) are the general solution of (11). Applying formula (36) with m �= −1
we obtain case (iii) of the theorem (note one should use new notations λi = −2λ∗

i , i = 1, 2, 3).
Finally, we analyze equation (38), which is locally equivalent to the RDC (2) with m = −1.

Using again the determining equations, which have been obtained in [9] to find operators of
the Q-conditional symmetries (6), we arrive at the following system:

ξV V = 0,

ηV V = 2ξV (−λ − ξ exp V ) + 2ξxV ,
(53)

(ξt + 2ξξx − 2ξV η + ξη) exp V + λξx − 3ξV F + 2ηxV − ξxx = 0,

ηFV + (2ξx − ηV )F + (η2 + 2ξxη + ηt ) exp V − ληx − ηxx = 0,

where ξ , η and F are yet-to-be determined functions. Solving the first and second equations
of this system we establish that the functions ξ and η must be given by formulae (40) and
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(41), respectively, otherwise Q-conditional symmetry does not exist. Substituting (40) and
(41) into the third equation of (53) we obtain the equation

(f h + ft + 2ffx) exp V + (fg)V exp V + λfx + 2gx − fxx = 0.

Since the functions f, g and h do not depend on V , one can split this equation with respect to
exp V and V exp V and obtain the system

f h + ft + 2ffx = 0, fg = 0, λfx + 2gx − fxx = 0. (54)

Substituting (40) and (41) into the fourth equation of (53) we arrive at the equation

(gV + h)FV + (2fx − g)F = −(gV + h)2 exp V + hxx + λhx

+ (gxx + λgx)V − (gt + 2fxg)V exp V − (ht + 2fxh) exp V. (55)

Now we apply to (55) the same approach, which has been used for solving equation (44).
Thus, taking into account system (54) we finally obtain the expressions

F = (λ1V + λ2)(λ3 − exp V ), f = 0, g = λ1, h = λ2,

which lead to the equation

Vxx = exp(V )Vt − λVx + (λ1V + λ2)(λ3 − exp V ) (56)

and the operator

Q = ∂t + (λ1V + λ2)∂V . (57)

Applying substitution (36) with m = −1 to (56) and (57) one obtains case (ii) of
theorem 1.

The proof is now completed.

Sketch of the proof of theorem 2. First of all we note that all Q-conditional symmetries of
equation (3) with m = 0 (see cases (iii), (iv) and (v) in theorem 2) were found in the recent
paper [32]. Note we were able to solve the overdetermined system (18) [32] in the general
case and to establish that all solutions of this system produce only the Lie symmetry operators
so that the relevant case was eliminated. �

Hereafter we assume the restriction m �= 0. Let us again use the substitution (36), which
reduces equation (3) to the form

Vxx = V nVt − λV n+1Vx + F(V ) (58)

(here n = − m
m+1 �= 0,−1, F (V ) = −(m + 1)C(V

1
m+1 )) if m �= −1 and to the form

Vxx = exp(V )Vt − λ exp(V )Vx + F(V ), F (V ) = C(exp V ) (59)

if m = −1.
Consider equation (58). Using the general form of the determining equations obtained in

[9] one easily arrives at the following system:

ξV V = 0,

ηV V = 2ξV (−λV n+1 − ξV n) + 2ξxV ,

ηFV + (2ξx − ηV )F + nη2V n−1 + 2ξxηV n + ηtV
n − λV n+1ηx − ηxx = 0, (60)

λξxV
n+1 + ((−2ξV + λ(n + 1))η + 2ξξx + ξt )V

n + ξηnV n−1 − 3ξV F + 2ηxV − ξxx = 0

to find the function ξ, η and F. In the case of equation (59) that system takes the form

ξV V = 0,

ηV V = −2ξV (λ + ξ) exp V + 2ξxV ,
(61)

(ξt + 2ξξx + (λ + ξ − 2ξV )η + λξx) exp V − 3ξV F + 2ηxV − ξxx = 0,

ηFV + (2ξx − ηV )F + (η2 + 2ξxη + ηt − ληx) exp V − ηxx = 0.



10058 R Cherniha and O Pliukhin

Taking into account the first equations in (60) and (61), one establish that there are only
three possibilities for the functions ξ and η :

(a) ξ = λ∗
1V + λ∗

2, η = η(V ), λ∗
1, λ

∗
2 ∈ R,

(b) ξ = f (t, x), η = g(t, x)V + h(t, x), (62)

(c) ξ = a(t, x)V + f (t, x), η = η(t, x, V ), a(t, x) �= 0.

In case (c) function η(t, x, V ) takes the forms

η =



− 2a(a + λ)

(n + 2)(n + 3)
V n+3 − 2af

(n + 1)(n + 2)
V n+2 + axV

2 + g(t, x)V + h(t, x), n �= −2,−3,

−2a(a + λ)V ln V + 2af ln V + axV
2 + (2a(a + λ) + g(t, x))V + h(t, x), n = −2,

2a(a + λ) ln V − af V −1 + axV
2 + g(t, x)V + h(t, x), n = −3,

(63)

for the system (60) and

η = −2a2V exp V − 2a(λ + f − 2a) exp V + axV
2 + g(t, x)V + h(t, x)

for the system (61).
Considering case (a) and system (60) one exactly arrives at items (i) and (ii) of theorem

2 (see for the details [40]). On the other hand, it was proved that cases (b) and (c) only lead
to the Lie symmetry operators.

The sketch of the proof is now completed.

4. Exact solutions of the nonlinear RDC equations

It is well known (see, e.g., examples in [41, 42]) that new non-Lie ansätze do not guarantee
the construction of new exact solutions. It turns out the relevant exact solutions may also
be obtainable by the standard Lie machinery if the given equation admits a non-trivial Lie
symmetry. Here, we construct exact solutions using the Q-conditional symmetry operators
found above and show that they are the so-called non-Lie solutions, i.e. cannot be obtained
using the Lie symmetry operators. As it follows from the proofs presented in section 3, the Q-
conditional symmetry operators have essentially simpler structure if one uses the substitution
(36). So, we will first find exact solutions of equations (37) and (38) and (58) and (59) and
afterwards use (36) to obtain those of the RDC equations (2) and (3).

We start from case (i) of theorem 1. Equation (5) and operator (6) are transformed by the
substitution (36) to the forms

Vxx = V nVt − λVx + (λ∗
1V + λ∗

2)(λ3 − V n) (64)

and

Q = ∂t + (λ∗
1V + λ∗

2)∂V , (65)

where λ∗
i = λi(m + 1), i = 1, 2. The relevant ansatz is constructed using the standard

procedure, i.e. we solve the linear equation Q(V ) = 0. Since its general solution depends on
λ∗

1 two ansätze are obtained:

V =



λ∗
2t + ϕ(x), λ∗

1 = 0,

ϕ(x) eλ∗
1 t − λ∗

2

λ∗
1

, λ∗
1 �= 0

(66)
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with ϕ(x) being an unknown function. Substituting (66) with λ∗
1 = 0 into (64), one arrives at

the ordinary differential equation (ODE)

ϕxx + λϕx − λ∗
2λ3 = 0,

with the general solution

ϕ = c1 + c2 e−λx +
λ∗

2λ3

λ
x.

Hereafter c1 and c2 are arbitrary constants. Hence, equation (64) with λ∗
1 = 0 possesses the

exact solution

V = λ∗
2t + c1 + c2 e−λx +

λ∗
2λ3

λ
x.

Using the substitution (36), we obtain the exact solution

U =
[
λ2(m + 1)t + c1 + c2 e−λx +

λ2λ3(m + 1)

λ
x

] 1
m+1

(67)

of the RDC equation with power nonlinearities

Ut = [UmUx]x + λUmUx + λ2U
−m − λ2λ3,m �= −1. (68)

Using the result of [9, 10] one establishes that equation (68) (with arbitrary coefficients)
is invariant only under two-dimensional algebra with the basic operators ∂t and ∂x . So,
U = U(c3x + c4t), c3, c4 ∈ R is the most general form of solutions that are obtainable by
the Lie machinery. Obviously, the exact solution presented above has different structures and
cannot be reduced to this form, therefore it is a non-Lie solution. Note this solution is the Lie
solution if one additionally sets c2 = 0. In quite similar way it can be shown that all solutions
obtained below are also the non-Lie solutions and may be reduced to the Lie solution only
under additional constraints.

Substituting (66) with λ∗
1 �= 0 into (64), one again obtains a linear second-order ODE,

which is integrable in terms of different elementary functions depending on δ = λ2 + 4λ∗
1λ3 =

λ2 + 4λ1(m + 1)λ3. Dealing in quite similar way to the case λ∗
1 = 0, we finally obtain three

exact solutions

U =
[

exp

(
λ1(m + 1)t − λ

2
x

) (
c1 exp

(√
δ

2
x

)
+ c2 exp

(−√
δ

2
x

))
− λ2

λ1

] 1
m+1

, δ > 0

(69)

U =
[

exp

(
−λ

2
x + λ1(m + 1)t

)
(c1 + c2x) − λ2

λ1

] 1
m+1

, δ = 0 (70)

U =
[

exp

(
−λ

2
x + λ1(m + 1)t

) (
c1 cos

√−δ

2
x + c2 sin

√−δ

2
x

)
− λ2

λ1

] 1
m+1

δ < 0

(71)

of the nonlinear RDC equation

Ut = [UmUx]x + λUmUx + (λ1U
m+1 + λ2)(U

−m − λ3), m �= −1. (72)

In the case of the Murray equation with the slow diffusion (26) one notes that δ > 0 if
λ1 > 0. Hence, solution (69) takes the form

U =
√√√√exp

(
2λ1t − λ

2
x

) (
c1 exp

(√
δ

2
x

)
+ c2 exp

(−√
δ

2
x

))
, δ = λ2 + 8λ1. (73)
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Figure 1. Exact solution (69) with m = 1, λ = 3, λ1 = −1, λ2 = 0, c1 = −c2 = 4.
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Figure 2. Exact solution (71) with m = 1, λ = 2, λ1 = −1, λ2 = 0, c1 = 1, c2 = 0.

This solution unboundedly grows if t → ∞ or x → ±∞. More interesting solutions occur
in the case of (26) with the anti-logistic term:

Ut = [UUx]x + λUUx − U(1 − U). (74)

Depending on δ = λ2 −8 one obtains three types of solutions. In the case m = 1, λ = 3, λ1 =
−1, λ2 = 0, c1 = −c2 = 4, solution (69) is presented in figure 1. This solution tends to zero
if t → ∞ and satisfies the zero boundary conditions for x = 0 and x = ∞. If λ = 2 then
solution (71) with m = 1 is valid. In the case λ1 = −1, λ2 = 0, c1 = 1, c2 = 0 this solution is
presented in figure 2. We note that the solution is again vanishing if t → ∞, but one satisfies
the zero Dirichlet conditions on the bounded interval [−π

2 , π
2 ].

Consider the Murray equation with the fast diffusion (28). Since δ = λ2 > 0 solution
(69) takes the form

U = [1 + exp(−λ1t)(c1 + c2 exp(−λx))]−1, (75)

which possesses attractive properties. Assuming c1 > 0 and c2 > 0, one sees that this solution
is positive and bounded for arbitrary (t, x) ∈ R

+ × R. Moreover, the solution tends either to
zero (λ1 < 0) or to 1 (λ1 > 0) if t → ∞. Both values, U = 0 and U = 1, are the steady-state
points of (28). Solution (75) tends to the steady-state point U = 0 if λx → −∞, while
U = [1 + c1 exp(−λ1t)]−1 if λx → ∞. An example of solution (75) is presented in figure 3.
It should also be noted that (75) with c1 = 0 is a traveling wave solution with the same
structure as that for the Murray equation (27) (see formula (90) in [32]).
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Figure 3. Exact solution (75) with λ = 1, λ1 = 1, c1 = 1, c2 = 1.

Consider case (ii) of theorem 1. Equation (7) and operator (8) are transformed by the
substitution (36) to the forms

Vxx = eV Vt − λVx + (λ1V + λ2)(λ3 − eV ), (76)

and

Q = ∂t + (λ1V + λ2)∂V , (77)

respectively. Using operator (77) we obtain the ansatz

V =



λ2t + ϕ(x), λ1 = 0,

ϕ(x) eλ1t − λ2

λ1
, λ1 �= 0,

(78)

which has the same structure as (66). Substituting (78) into (76), one again obtains integrable
second-order ODEs and easily constructs the relevant exact solutions of the RDC equation
(7). In the case λ1 = 0, the solution is

U = exp

[
λ2t + c1 + c2e−λx +

λ2λ3

λ
x

]
, (79)

while the case λ1 �= 0 produces three solutions depending on δ = λ2 + 4λ1λ3:

U = exp

[
exp

(
λ1t − λ

2
x

) (
c1 exp

(√
δ

2
x

)
+ c2 exp

(−√
δ

2
x

))
− λ2

λ1

]
, δ > 0, (80)

U = exp

[
exp

(
−λ

2
x + λ1t

)
(c1 + c2x) − λ2

λ1

]
, δ = 0 (81)

and

U = exp

[
exp

(
−λ

2
x + λ1t

)(
c1 cos

√−δ

2
x + c2 sin

√−δ

2
x

)
− λ2

λ1

]
, δ < 0. (82)

Note that the properties of solutions (79)–(82) depend essentially on the values of c1 and c2.
For example, solution (80) with negative c1 and c2 tends to zero if x → ±∞, while this
solution infinitely increases if those constants are positive. An example of solution (80) is
presented in figure 4.
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Figure 4. Exact solution (80) with λ = 1, λ1 = 1, λ2 = 1, λ3 = 1, c1 = −1, c2 = −1.

Consider case (iii) of theorem 1. Since we were unable to solve the overdetermined
system (11), we used the particular solution producing the Q-conditional operator (13). An
application of this operator leads to a solution in the implicit form

U = (h(x)t + ϕ(x))2 (83)

to the nonlinear RDC equation

Ut = [U− 1
2 Ux]x + λU− 1

2 Ux + λ2U
1
2 + λ3.

The functions h and ϕ arising in (83) satisfy the ODE system

hxx + λhx − h2 +
λ2

2
h = 0,

ϕxx + λϕx − hϕ +
λ2

2
ϕ +

λ3

2
= 0,

which is not integrable. Moreover, there are no any particular solutions of this system in the
known books [43, 44]. The trivial solution of the first equation h = λ2

2 leads to a particular
case of solution (67).

Thus, we have constructed all possible exact solutions, which can be obtained by the
application of the Q-conditional symmetry operators arising in theorem 1.

Now we apply the operators arising in theorem 2 to construct exact solutions. First of
all we note that cases (i) and (ii) only should be considered because for cases (iv) and (v) the
relevant work has been done in the recent paper [32]. Case (iii), of course, cannot produce
any new results because the Burgers equation is linearizable by the Cole–Hopf substitution.

Consider case (i) of theorem 2. The operator (16) arising in this case can be successfully
applied to construct exact solutions in the explicit form. Omitting rather trivial computations
we present the final result: equation

Ut = [UmUx]x + λUm+1Ux + λ2U
−m, m �= −1

possesses the solution

U =
[

1

λt + c1

(
− x + λ2(m + 1)

(
λ

t2

2
+ c1t

)
+ c2

)] 1
m+1

, (84)

while

U =
[

1

1 + c1e−λ1(m+1)t

(
(m + 1)

(
−λ1

λ
x + λ2t − c1λ2

λ1(m + 1)
e−λ1(m+1)t

)
+ c2

)] 1
m+1

(85)

is the exact solution of the nonlinear RDC (15) with m �= −1, λ1 �= 0.
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The most cumbersome structure of the conditional symmetry operator occurs in case (ii)
of theorem 2. As a consequence, essential difficulties arise if one applies operator (18) for
finding exact solutions. On the other hand, it will be shown that many of the exact solutions
obtained possess remarkable properties.

Equation (17) and operator (18) by the substitution (36) with m = −1/2 are transformed
to the forms

Vxx = V Vt − λV 2Vx − λ∗
1 + 3λV

3λ

(
1

3
λ∗

1λV 3 + λ∗
2V + λ∗

3

)
(86)

and

Q = ∂t + (−λV + λ∗
1)∂x +

(
1

3
λ∗

1λV 3 + λ∗
2V + λ∗

3

)
∂V , (87)

respectively. Hereafter λ∗
1 = 3λ1

2λ
�= 0, λ∗

2 = λ2
2 , λ∗

3 = λ3
2 and V > 0 is assumed since (17)

contains terms U
1
2 and U− 1

2 . Instead of the construction of a non-Lie ansatz using operator
(87) (in this case it is a cumbersome procedure), one can use the equation Q(V ) = 0, i.e.

Vt = (λV − λ∗
1)Vx + 1

3λλ∗
1V

3 + λ∗
2V + λ∗

3, (88)

to eliminate Vt from (86). In fact, substituting the right-hand side of (88) into (86), one arrives
at

Vxx + λ∗
1V Vx +

1

9
λ∗

1
2
V 3 +

1

3λ
λ∗

1λ
∗
2 +

1

3λ
λ∗

1λ
∗
3 = 0, (89)

which is the nonlinear ODE containing variable t as a parameter. Equation (89) is reduced to
the form

Vyy + 3V Vy + V 3 +
3λ∗

2

λ∗
1λ

V +
3λ∗

3

λ∗
1λ

= 0 (90)

by the simple substitution

y = λ∗
1

3
x. (91)

Equation (90) can be transformed into the linear third-order ODE

Wyyy + 3pWy + 2qW = 0, (92)

where λ∗
2

λ∗
1λ

= p,
3λ∗

3
λ∗

1λ
= 2q, by the known substitution [43] (see item (6.38))

V = Wy

W
. (93)

According to the classical theory of the linear ODE one needs to solve the algebraic equation

k3 + 3pk + 2q = 0, (94)

which corresponds to (92). Hence, four different subcases depending on the values of p and
q should be separately considered.

Subcase 1. If p = q = 0 then k1 = k2 = k3 = 0. The general solution of (92) has the form
W = f + gy + hy2 and we arrive at the expression

V = g + 2hy

f + gy + hy2
, (95)

giving the general solution of the nonlinear ODE (90). Hereafter f = f (t), g = g(t), h = h(t)

are arbitrary (at the moment) smooth function and at least one of them must be non-zero. So,
(95) with (91) generates the general solution of (89) with λ∗

1 �= 0. Finally, to obtain the general
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solution of system (86) and (88), it is sufficient to substitute (95) with y = λ∗
1

3 x into the second
equation of this system. After the relevant calculations a cumbersome expression is obtained;
however, one splits into separate parts for xn, n = 0, 1, 2, and we arrive at the ODE system

ght − gth = 2
3λ∗

1
2
h2,

f ht − fth = 1
3λ∗

1h(2λh + λ∗
1g), (96)

fgt − ftg = 1
3λ∗

1(2λgh − 2λ∗
1f h + λ∗

1g
2).

System (96) has the similar structure to that from [32] (see formula (60)) and can be solved in
a similar way. Substituting the general solution of (96) into (95) and using (91), we find the
exact solutions

V = 3

−λ∗
1

2t + λ∗
1x + 3c1

(97)

and

V = 2λ∗
1(x − λ∗

1t) + 3c1

λ∗
1

2

3 (x − λ∗
1t)

2 + c1λ
∗
1(x − λ∗

1t) − 2λλ∗
1t + c2λ

∗
1

(98)

of the equation

Vxx = V Vt − λV 2Vx − λ∗
1

3
λV 4 − λ∗

1
2

9
V 3. (99)

Applying the substitution (36) with m = −1/2 to (97)–(99) and renaming the parameters, we
arrive at the exact solutions

U =
[

1

− 3λ2
1

4λ2 t + λ1
2λ

x + c1

]2

and

U =
[

2
(
x − 3 λ1

2λ
t
)

+ 2λc1
λ1

λ1
2λ

(
x − 3λ1

2λ
t
)2

+ c1
(
x − 3λ1

2λ
t
) − 2λt + c2

]2

of the nonlinear RDC equation

Ut = [U− 1
2 Ux]x + λU

1
2 Ux + λ1U

2 +
λ2

1

2λ
U

3
2 .

Subcase 2. If p3 = −q2 �= 0 then k1 = α1 = −2 3
√

q and k2 = k3 = α2 = 3
√

q. The general
solution of (92) is

W = f exp(α1y) + (g + yh) exp(α2y), α1 = −2α2

so that the expression

V = α1f exp(α1y) + (α2g + h(α2y + 1)) exp(α2y)

f exp(α1y) + (g + yh) exp(α2y)
(100)

presents the general solution of the nonlinear ODE (90). Dealing in a quite similar way to
subcase 1, one easily obtains the ODE system

ght − gth = λ∗
1

3
h2(2λα2 + λ∗

1),

f ht − fth = λ∗
1α2f h(λα2 − λ∗

1), (101)

3α2(fgt − ftg) + f ht − fth = λ∗
1α2f

(
g

(
2

3
λα2

2 − 3α2λ
∗
1 − 5

3

)
− h(λα2 + 2λ∗

1)

)
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to find the unknown functions f (t), g(t) and h = h(t). It turns out that system (101) has the
same structure as that (67) from [32] and its general solution can be constructed. Finally, we
find the exact solutions

U =
[−2c1α2 exp(β0t − β1x) + α2c2

c1 exp(β0t − β1x) + c2

]2

and

U =
[−2c1α2 exp(β0t − β1x) + c2α2

(
β2t − β3x + c3 + 1

α2

)
c1 exp(β0t − β1x) + c2(β2t − β3x + c3)

]2

of the nonlinear RDC equation

Ut = [U− 1
2 Ux]x + λU

1
2 Ux +


λ1U

3
2 − 3

3

√
λ1λ

2
3

4
U

1
2 + λ3


 (

λ1

2λ2
+ U

1
2

)
,

where β0 = 3λ1
2λ

α2
( 3λ1

2λ
− λα2

)
, β1 = 3λ1

2λ
α2, β2 = − λ1

2λ

( 3λ1
2λ

+ 2λα2
)
, β3 = − λ1

2λ
, α2 = 3

√
λ3

2λ1
�=

0.

Subcase 3. If p3 + q2 < 0 then three roots of (94) are different and real. This case is the most
cumbersome because the known Cardano formulae must be used. Let us set k1 = α1, k2 = α2

and k3 = α3, where αi, i = 1, 2, 3, are different real numbers, which are calculated by the
Cardano formulae

α1 = −2 6
√

−p3 cos

(
1

3
arctan

(√
−p3 − q2

q

))
,

α2 = 2 6
√

−p3 cos

(
1

3
arctan

(√
−p3 − q2

q

)
− π

3

)
, (102)

α3 = 2 6
√

−p3 cos

(
1

3
arctan

(√
−p3 − q2

q

)
+

π

3

)
,

if q > 0, by the formulae

α1 = 2 6
√

−p3 cos

(
1

3
arctan

(√
−p3 − q2

q

))
,

α2 = −2 6
√

−p3 cos

(
1

3
arctan

(√
−p3 − q2

q

)
− π

3

)
, (103)

α3 = −2 6
√

−p3 cos

(
1

3
arctan

(√
−p3 − q2

q

)
+

π

3

)
,

if q < 0 and by the formulae

α1 = 0, α2 =
√

−3p, α3 = −
√

−3p, (104)

if q = 0. The general solution of (92) is

W = f exp(α1y) + g exp(α2y) + h exp(α3y),

and it leads to the general solution

V = α1f exp(α1y) + α2g exp(α2y) + α3h exp(α3y)

f exp(α1y) + g exp(α2y) + h exp(α3y)
(105)

of the nonlinear ODE (90).
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Figure 5. Exact solution (107) with λ = 1, λ1 = 0.5, c1 = c2 = c3 = 1, α1 = 0.1, α2 = 2,

α3 = 3.

Substituting (105) with y = λ∗
1

3 x into (88) and conducting the relevant calculations and
splits we again arrive at the ODE system to find the unknown functions f (t), g(t) and h(t).

This system has the form

ftg − fgt = −λ∗
1

3
fg

(
λ
(
α2

1 − α2
2

)
+ λ2(α1 − α2)

)
,

fth − f ht = −λ∗
1

3
f h

(
λ
(
α2

1 − α2
3

)
+ λ2(α1 − α3)

)
, (106)

gth − ght = −λ∗
1

3
gh

(
λ
(
α2

2 − α2
3

)
+ λ2(α2 − α3)

)
and is fully integrable [32]. Its general solution leads to the exact solution

U =
[
α1c1 exp(β1t + γ1x) + α2c2 exp(β2t + γ2x) + α3c3 exp(β3t + γ3x)

c1 exp(β1t + γ1x) + c2 exp(β2t + γ2x) + c3 exp(β3t + γ3x)

]2

(107)

of the nonlinear RDC equation (17) with λ1 �= 0. Here, βi = − λ1
2λ

(
λα2

i + 3λ1
2λ

αi

)
, γi = λ1

2λ
αi, i =

1, 2, 3, and the roots αi, i = 1, 2, 3, are determined by formulae (102)–(104) depending on
the q sign. In the case ci > 0, i = 1, 2, 3, this type of exact solutions is known in applications
as two-shock waves (see, e.g., [26]). Note that such solutions satisfy the zero Neumann
conditions, Ux = 0 at x = ±∞. An example of such a solution is presented in figure 5.

Consider the generalized FN equation with the fast diffusion (35). In the case λ2 �= 0 and
λ3 = 0, we immediately obtain p < 0 and q = 0, therefore formulae (104) and (107) give the
solution

U =
[

c2 exp
(

λ2
2λ

((
λ − 3λ2

2λ

)
t − x

)) − c3 exp
(

λ2
2λ

((
λ + 3λ2

2λ

)
t + x

))
c1 + c2 exp

(
λ2
2λ

((
λ − 3λ2

2λ

)
t − x

))
+ c3 exp

(
λ2
2λ

((
λ + 3λ2

2λ

)
t + x

))
]2

. (108)

Taking into account formula (36) with m = −1/2, we note that solution (108) with arbitrary
c1, c2 and c3 is not valid in the domain (t, x) ∈ R

+ × R. However, setting, for example,
c3 = 0 and positive constants c1, c2, we obtain traveling wave solution, which is valid in
this domain. An example of such a solution is presented in figure 6. It should be stressed
that similar solutions also possess the classical FN equation [45] and the generalized FN
equation (31) [32].

Subcase 4. If p3 + q2 > 0 then three roots of (94) are different and two of them are complex
conjugate. The Cardano formulae should be again applied. Setting k1 = α, k2,3 = a ± ib,
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Figure 6. Exact solution (108) with λ = 1, λ2 = 1, c1 = 1, c2 = 1, c3 = 0, α2 = 1, α3 = −1.

where

α = 3

√
−q +

√
p3 + q2 − 3

√
q +

√
p3 + q2,

a = −1

2

( 3

√
−q +

√
p3 + q2 − 3

√
q +

√
p3 + q2

)
, (109)

b =
√

3

2

( 3

√
−q +

√
p3 + q2 +

3

√
q +

√
p3 + q2

)
,

the general solution of (92) may be presented in the form

W = f exp(αy) + (g cos(by) + h sin(by)) exp(ay), α = −2a.

Using (93) one arrives at the general solution

V = αf exp(αy) + (g(a cos(by) − b sin(by)) + h(b cos(by) + a sin(by))) exp(ay)

f exp(αy) + (g cos(by) + h sin(by)) exp(ay)
(110)

of the nonlinear ODE (90). The analog of (106) in this case takes the form

−3a(ftg − fgt ) + b(f ht − fth) = bf h
(
λ∗

2 − 2λ∗
1

2
a
)

+
λ∗

1

3
λafg(2a2 + 2b2 + 5a3 + ab2),

− 3a(fth − f ht ) + b(ftg − fgt ) = −bfg
(
λ∗

2 − 2λ∗
1

2
a
)

+
λ∗

1

3
λaf h(2a2 + 2b2 + 5a3 + ab2),

ght − gth = λ∗
1

3
b(2λa + λ2)(g

2 + h2). (111)

It should be stressed that the ODE system (111) has essentially different structures from those
presented above and its solving takes a lot of efforts. We were able to realize all necessary
computations, which are omitting here, and to check the result using the program package
MATHEMATICA 5.0. Finally, the exact solution

U =
[−2c1a exp(β0x + β1t) + c2(a cos(β2x + β3t − c3) − b sin(β2x + β3t − c3))

c1 exp(β0x + β1t) + c2 cos(β2x + β3t − c3)

]2

(112)

of the nonlinear RDC equation (17) with λ1 �= 0 has been found. Here β0 = − 3λ1
2λ

a, β1 =
− λ1

2λ

(
λ(b2 + 3a2) − 9λ1

2λ
a
)
, β2 = λ1

2λ
b, β3 = − λ1

2λ
b
(
2λa + 3λ1

2λ

)
, and a and b are determined

by formulae (109). Note that quasi-periodic periodic solutions of the similar form were also
obtained for the reaction–diffusion equation (32) with λ = 0 [29, 33].
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5. Conclusions

In this paper, theorems 1 and 2 giving a complete description of Q-conditional symmetries
of the nonlinear RDC equations (2) and (3) are proved. It should be stressed that all the
Q-conditional symmetry operators listed in theorems 1 and 2 contain the same nonlinearities
with respect to the dependent variable U as the relevant RDC equations. Analogous results
were earlier obtained for single reaction–diffusion equations [23, 27–29].

However, we note that there is the essential difference between the RDC equations (2)
and (3) and the relevant RD equation

Ut = [UmUx]x + C(U).

For example, the Murray-type equation (22) admits the Q-conditional symmetry (23), while
the RD equation with this term, i.e. the Fisher-type equation

Ut = Uxx + λ0 + λ1U + λ2U
2, λ2 �= 0,

does not possess one. Similarly, the RDC equation (17) possessing the Q-conditional symmetry
(18) does not has an analog among reaction–diffusion equations with the diffusivity U− 1

2 .
The RDC equations listed in theorems 1 and 2 contain several well-known equations

arising in applications and their direct generalizations. In the particular case, the Murray
equation (27), its porous analog (26) and its analog (28) with the fast diffusion (see also
(29)–(30)); the Fitzhugh–Nagumo equation [37] with the convective term

Ut = Uxx + λUUx + λ3U(U − δ)(1 − U), 0 < δ < 1 (113)

and its analog (35) with the fast diffusion; the Kolmogorov–Petrovskii–Piskunov equation
[38] with the convective term

Ut = Uxx + λUUx + λ3U(1 − U)2 (114)

and the Newell–Whitehead equation with the convective term

Ut = Uxx + λUUx + λ3U
3 − λ1U. (115)

A further generalization of the RDC equations (2) and (3) reads

Ut = [UmUx]x + λUnUx + C(U), λ �= 0, (116)

where m and n are the arbitrary constants. The work is in progress on the complete description
of Q-conditional symmetry of (116) and the RDC equation with exponential nonlinearities

Ut = [exp(mU)Ux]x + λ exp(nU)Ux + C(U), λ �= 0.

It is well known that new Q-conditional symmetries and ad hoc methods do not guarantee
the construction of exact solutions, which cannot be obtained by the Lie machinery (see non-
trivial examples in [41, 42]). In this paper, several exact solutions were constructed using the
conditional symmetries arising in theorems 1 and 2. It was shown that these solutions are
not obtainable by Lie symmetries; however, they contain the known plane wave solutions as
particular cases. Many of the solutions obtained possess attractive properties and can be used
for further investigation of the relevant boundary-value problems. In the particular case, we
established that the zero Dirichlet and Neumann conditions, i.e. typical boundary conditions
for mathematical models arising in physics and biology, can be satisfied by the relevant fitting
of constants c1, c2 and c3 (see the solutions presented in figures 1, 2 and 4–6).

To the best of our knowledge many of the solutions presented above are new. However,
we noted that some of them can be derived from the recent paper [46]. In fact, if one applies
substitution (36) to the RDC equation (72) and its solutions (69)–(71), then equation (54)
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[46] with (65)–(66) [46] and α(s) = sn, and solutions (69)–(71) [46] are exactly obtained.
Nevertheless, the authors of that paper do not use any symmetries to construct exact solutions,
formula (72) [46] is nothing else but the equation Q(V ) = 0, where Q is the conditional
symmetry operator (47) of (46). Thus, we obtain new confirmation of the known idea (see,
i.e., [12, 21, 23]) that any exact solution can be obtained by the relevant Lie or conditional
symmetry operator.

Acknowledgments

The authors are grateful to the unknown referee for the very useful comments and to Professor
M I Serov for stimulating discussions.

References

[1] Ames W F 1972 Nonlinear Partial Differential Equations in Engineering (New York: Academic)
[2] Murray J D 1977 Nonlinear Differential Equation Models in Biology (Oxford: Clarendon)
[3] Murray J D 1989 Mathematical Biology (Berlin: Springer)
[4] Ovsiannikov L V 1959 Group relations of the equation of non-linear heat conductivity Dokl. Akad. Nauk SSSR

125 492–5
[5] Dorodnitsyn V A 1982 On invariant solutions of non-linear heat conduction with a source USSR Comput. Math.

Math. Phys. 22 115–22
[6] Oron A and Rosenau P 1986 Some symmetries of the nonlinear heat and wave equations Phys. Lett. A 118 172–6
[7] Baikov V, Gazizov R, Ibragimov N and Kovalev V 1997 Water redistribution in irrigated soil profiles: invariant

solutions of the governing equation Nonlinear Dyn. 13 395–409
[8] Cherniha R and Serov M 1997 Lie and non-Lie symmetries of nonlinear diffusion equations with convection

term Symmetry in Nonlinear Mathematical Physics: Proc. 2nd Int. Conf. (Kyiv) pp 444–9
[9] Cherniha R and Serov M 1998 Symmetries, Ansätze and exact solutions of nonlinear second-order evolution

equations with convection term Eur. J. Appl. Math. 9 527–42
[10] Cherniha R and Serov M 2006 Symmetries, Ansätze and exact solutions of nonlinear second-order evolution

equations with convection term: II Eur. J. Appl. Math. 17 597–605
[11] Bluman G W and Cole I D 1969 The general similarity solution of the heat equation J. Math. Mech. 18 1025–42
[12] Olver P and Rosenau P 1987 Group-invariant solutions of differential equations SIAM J. Appl. Math. 47 263–78
[13] Levi D and Winternitz P 1989 Non-classical symmetry reduction: example of the Boussinesq equation J. Phys.

A: Math. Gen. 22 2915–24
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